QUESTION 1
The policy of the Suburban Transit authority is to add a bus route if more than 55 percent of the potential commuters indicate they would use the particular route. A sample of 70 commuters revealed that 42 would use a proposed route from Bowman Park to the downtown area. You will be testing to determine if the Bowman-to-downtown route meets the STA criterion using the .05 significance level. What is your conclusion?
a. There is evidence that more than 55% would use the route and therefore the STA criteria is met.
b. There is no evidence that more than 55% would use the route and therefore the STA criteria was not met.
c. 60 is greater than .55 so the criteria is met
d. indeterminant
QUESTION 2
An industrial engineer would like to determine whether there are more units produced on the afternoon shift than on the morning shift. A sample of 50 morning-shift workers showed that the mean number of units produced was 345, with a standard deviation of 21. A sample of 60 afternoon-shift workers showed the mean number of units produced was 351, with a standard deviation of 28 units. At the .05 significance level we will test if the mean number of units produced on the afternoon-shift is larger. Is this a one sample test or a two sample test?
a. one sample test
b. two sample test
c. neither
d. both
QUESTION 3
An industrial engineer would like to determine whether there are more units produced on the afternoon shift than on the morning shift. A sample of 50 morning-shift workers showed that the mean number of units produced was 345, with a standard deviation of 21. A sample of 60 afternoon-shift workers showed the mean number of units produced was 351, with a standard deviation of 28 units. At the .05 significance level we will test if the mean number of units produced on the afternoon-shift is larger. Is this a one tail or two tail test?
a. neither
b. one tail
c. two tail