Question description
Question 1
Select the conclusion that follows in a single step from the given premises:
1. ~R≡ ~R
2. N • ~T
3. R ⊃ ~(N • ~T)
∼T 2, Simp | |
(N •∼T)⊃∼R 3, Trans | |
∼R 2, 3, MT | |
R⊃(∼N∨∼∼T) 3, DM | |
∼R 1, Taut |
Question 2
Select the conclusion that follows in a single step from the given premises:
1. N ∨ C
2. (N ∨ C) ⊃ (F ⊃ C)
3. ~C
F⊃C 1, 2, MP | |
N 1, 3, DS | |
∼F 2, 3, MT | |
∼N 1, 3, MT | |
∼C • R 3, Add |
Question 3
Select the conclusion that follows in a single step from the given premises:
1. A
2. (A ⊃ ~T) ⊃ ~G
3. Q ⊃ (A ⊃ ~T)
Q⊃(T⊃∼A) 3, Trans | |
(Q⊃A)⊃∼T 3, Assoc | |
A⊃(∼T •∼G) 2, Exp | |
∼T 1, 3, MP | |
Q⊃∼G 2, 3, HS |
Question 4
Select the conclusion that follows in a single step from the given premises:
1. D ⊃ H
2. ~D
3. ~(D ∨ S)
∼H 1, 2, MT | |
∼D∨(D⊃H) 2, Add | |
H⊃D 1, Com | |
S 2, 3, DS | |
∼D∨∼S 3, DM |
Question 5
Select the conclusion that follows in a single step from the given premises:
1. ~U ⊃ (S • K)
2. R ⊃ (~U • ~U)
3. S ≡ ~U
(∼U • S)⊃K 1, Exp | |
R⊃U 2, DN | |
R⊃∼U 2, Taut | |
R⊃(S • K) 1, 2, HS | |
(S⊃U) • (∼U⊃∼S) 3, Equiv |
Question 6
Select the conclusion that follows in a single step from the given premises:
1. P • (~H ∨ D)
2. ~(~P • ~H)
3. (P ⊃ ~H) • (~P ⊃ H)
P ≡ ∼H 3, Equiv | |
∼H∨D 1, Simp | |
(P •∼H)∨D 1, Assoc | |
P • (H⊃D) 1, Impl | |
P • H 2, DN |
Question 7
Select the conclusion that follows in a single step from the given premises:
1. ~(Q • ~S)
2. ~F ⊃ (Q • ~S)
3. H ∨(Q • ~S)
(H • Q)∨(H •∼S) 3, Dist | |
∼Q∨S 1, DM | |
F 1, 2, MT | |
H 1, 3, DS | |
~~F 1, 2, MT |
QUESTION 8
Select the conclusion that follows in a single step from the given premises:
1. Q ⊃ (A ∨ ~T)
2. T
3. A ∨ ~T
Q⊃(∼∼A∨∼T) 1, DN | |
(A∨∼T)⊃Q 1, Com | |
(Q⊃A)∨∼T 1, Assoc | |
Q 1, 3, MP | |
A 2, 3, DS |
Question 9
Select the conclusion that follows in a single step from the given premises:
1. (J • ~N) ∨ T
2. ~(J • ~N)
3. ~T
T 1, 2, DS | |
∼J∨N 2, DM | |
J •∼N 1, 3, DS | |
J • (∼N∨T) 1, Assoc | |
∼J 2, Simp |
Question 10
Select the conclusion that follows in a single step from the given premises:
1. (K • ~T) ∨ (K • ~H)
2. ~M ⊃ (K • ~H)
3. ~(K • ~H)
∼K∨H 3, DM | |
K •∼T 1, 3, DS | |
K • (∼T∨∼H) 1, Dist | |
M 2, 3, MT | |
(∼M • K)⊃∼H 2, Exp |
Question 11
Select the conclusion that follows in a single step from the given premises:
1. ~I ∨ ~~B
2. M ⊃ ~I
3. I
M⊃∼∼B 1, 2, HS | |
∼∼B 1, 3, DS | |
∼M 2, 3, MT | |
∼I⊃M 2, Com | |
∼(I •∼B) 1, DM |
Question 12
Select the conclusion that follows in a single step from the given premises:
1. A
2. G ⊃ (A ⊃ ~L)
3. ~A ∨ ~G
A∨G 3, DN | |
(G⊃A)⊃∼L 2, Assoc | |
∼L 1, 2, MP | |
∼G 1, 3, DS | |
G⊃(∼∼L⊃∼A) 2, Trans |
Question 13
Select the conclusion that follows in a single step from the given premises:
1. (S • ~J) ∨ (~S • ~~J)
2. S ∨ ~S
3. ~J ⊃ P
S 2, Taut | |
∼J∨∼∼J 1, 2, CD | |
S ≡ ∼J 1, Equiv | |
J∨P 3, Impl | |
∼P⊃J 3, Trans |
Select the conclusion that follows in a single step from the given premises:
1. (S ⊃ ~F) • (~F ⊃ B)
2. S ∨ ~F
3. ~F
S⊃B 1, HS | |
∼F∨B 1, 2, CD | |
S 2, 3, DS | |
B 1, 3, MP | |
∼S 1, 3, MT |
Question 15
Select the conclusion that follows in a single step from the given premises:
1. ~M ⊃ S
2. ~M
3. (M ∨ H) ∨ ~S
H 2, 3, DS | |
M∨H 3, Simp | |
M∨(H∨∼S) 3, Assoc | |
∼S 1, 2, MP | |
M∨S 1, Impl |
Question 16
Select the conclusion that follows in a single step from the given premises:
1. G • ~A
2. K ⊃ (G • ~A)
3. G ⊃ M
(K⊃G )⊃∼A 2, Exp | |
K⊃(∼A • G) 2, Com | |
(K⊃G) •∼A 2, Assoc | |
K 1, 2, MP | |
M 1, 3, MP |
Question 17
Select the conclusion that follows in a single step from the given premises:
1. ~E ⊃ P
2. ~P
3. ~(P ∨ ~H)
∼H 2, 3, DS | |
∼P •∼(P∨∼H) 2, 3, Conj | |
∼P • H 3, DM | |
E 1, 2, MT | |
∼P⊃E 1, Trans |
Question 18
Select the conclusion that follows in a single step from the given premises:
1. N ≡ R
2. (N • ~R) ⊃ C
3. N
(N⊃R)∨(R⊃N) 1, Equiv | |
N • (∼R⊃C) 2, Assoc | |
C⊃(N •∼R) 2, Com | |
N⊃(∼R⊃C) 2, Exp | |
R 1, 3, MP |
Question 19
Select the conclusion that follows in a single step from the given premises:
1. N
2. R ⊃ ~N
3. ~C • (T ⊃ R)
∼C 3, Simp | |
T⊃∼N 2, 3, HS | |
(∼C • T)⊃R 3, Assoc | |
∼R 1, 2, MT | |
N⊃∼R 2, Trans |
Question 20
Select the conclusion that follows in a single step from the given premises:
1. ~N • ~F
2. K ⊃ (N • F)
3. U ∨ (K • ~N)
∼K 1, 2, MT | |
(U∨K) •∼N 3, Assoc | |
(K • N)⊃F 2, Exp | |
(U∨K) • (U∨∼N) 3, Dist | |
∼(N • F) 1, DM |